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Abstract. The construction of discrete scalar wave propagation equations in arbitrary inhomogeneous
media was recently achieved by using elementary dynamical processes realizing a discrete counterpart of
the Huygens principle. In this paper, we generalize this approach to spinor wave propagation. Although the
construction can be formulated on a discrete lattice of any dimension, for simplicity we focus on spinors
living in 1 + 1 space-time dimensions. The Dirac equation in the Majorana-Weyl representation is directly
recovered by incorporating appropriate symmetries of the elementary processes. The Dirac equation in the
standard representation is also obtained by using its relationship with the Majorana-Weyl representation.

PACS. 03.65.Pm Relativistic wave equations – 02.70.-c Computational techniques

1 Introduction

The formulation of wave propagation by using the
Huygens principle was investigated some years ago by the
Transmission Line Matrix Modeling method (TLM) [1].
This method retrieves the Maxwell equations by introduc-
ing current and voltage impulses which propagate along
the bonds and are scattered on the nodes of a mesh of
transmission lines. Refinements lead the TLM method to
describe complex boundary conditions, gain or losses and
propagation in inhomogeneous media for electromagnetic
waves [2]. Such an idea was renewed recently for studying
time-dependent wave propagation for scalar waves in in-
homogeneous media [3,4]. Instead of considering currents
or voltage pulses, the authors introduced some arbitrary
scalar quantities that propagate on a Cartesian lattice.
Both approaches include the action-by-proximity of the
pulses, or of the scalar quantities, when they propagate
from node to node in one time step and the emission of
secondary waves at each node by means of a scattering
process which emits the incident energy in all directions.
Since voltage and current impulses are equivalent to elec-
tric and magnetic fields on a two-dimensional mesh, it
is not surprising that the TLM method applies to the
Maxwell equations. Nevertheless, the nature of the wave
equations which result from such a formulation applied
to scalar quantities propagating on a Cartesian lattice re-
mains unclear. A beginning of answer arises in the work of
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Sornette et al. [5], who have enlarged the scalar model to
construct the Klein-Gordon equation and the Schrödinger
equation. However, the results were limited to homoge-
neous media and the Schrödinger equation was ill-defined
in the continuum limit. In order to generalize this attempt,
a constructive approach was explored recently [6] to re-
cover various kinds of scalar waves in an inhomogeneous
medium. Starting from basic principles and incorporating
fundamental symmetries to the scattering nodes, the au-
thors derived in a systematic way time-dependent scalar
wave equations in inhomogeneous media. They exhibited
a unified equation which properly tuned by a unique pa-
rameter yields either the Klein-Gordon equation or the
Schrödinger equation with a well defined continuum limit.
This derivation offers a general framework, including the
related TLM approach and opens up possible generaliza-
tions to describe spinor or vector wave propagation.

In the present paper, we extend this previous work to
the description of discrete wave propagation equations for
free spinor fields. For simplicity, we restrict the presen-
tation to the derivation of the Dirac equation on a one-
dimensional regular lattice but the proof can be worked
out on any underlying discrete lattice. Throughout the
paper, we call currents the scalar quantities which obey a
simple dynamics of propagation and scattering. The prob-
lem being linear, we define naturally the two scalar com-
ponents of the spinor field as linear superpositions of those
currents. In order to derive coupled propagation equations
linking together both components of the spinor field, we
first require closure conditions compelling the form of the
matrices which describe the scattering processes. Finally,
by taking into account appropriate space-time relativistic
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symmetries, the discretized Dirac equation in 1 + 1
dimensions is recovered. The current model is constructed
for the two usual representations of the Dirac equation in
1 + 1 space-time dimension, i.e. the Majorana-Weyl rep-
resentation and the standard representation.

Independently from the above approach, different
kinds of microscopic models describing spinor wave equa-
tions have been proposed in the literature. Those models
belong to two distinct classes: they are either based on a
random walk description, leading to Euclidean-invariant
spinor wave equations, or they rely on a complex hopping-
type dynamics on a lattice, leading to relativistic-invariant
spinor wave equations. The first class of microscopic prob-
abilistic models deals with critical behavior of the free Ma-
jorana spinor field where the time variable t is turned into
a parameter that controls the approach to a critical point
(the system is at criticality when t→∞). It is indeed well
known [7,8] that local scalar field theories can be studied
within a random walk representation, where the time t cor-
responds to the length of a brownian path. Among such
approaches, Mc Keon et al. [9] have constructed a proba-
bilistic model, based on binomial processes, to describe the
spinor field in 1 + 1 space-time dimensions. As the Dirac
equation is recovered from real stochastic processes, their
method applies only to the real Majorana representation
of the Dirac equation. Another random walk approach,
including a spin factor, is developed in [10]. The model is
defined on three-dimensional lattices and exhibits different
critical behavior depending on the value of the spin. The
second class of models deals with the Dirac equation it-
self. The paradigm of those lattice models are the Susskind
fermions [11] which have been extensively used in lattice
gauge theories. A different but closed approach is exposed
in [12], where the model describes the dynamics of point-
like spinless particles on a three-dimensional square lattice
in the presence of complex hopping rates of modulus unity.
Related works have been applied to study condensed mat-
ter topics such as the ground state of the Heisenberg anti-
ferromagnet in two or three dimensions [13], or the energy
spectrum of flux states [14,15]. The construction in terms
of currents presented in this paper can be considered as
belonging to that second class of models.

The backbone of the paper are Sections 2 and 3, where
we describe the construction of the Dirac equation in the
Majorana-Weyl and standard representations respectively.
Sections 2.1 and 3.1 introduce the basis of the current
model in both representations. Sections 2.2, 3.2, deal with
the derivation of the discrete coupled propagation equa-
tions. The Majorana-Weyl construction turns out to be
solvable by choosing suitable symmetries in Section 2.3.
The current model is achieved by computing the scatter-
ing matrices in Section 2.4. On the contrary, the stan-
dard representation cannot be constructed in the same
direct way. Hence, to compute the scattering matrices we
use the linear transformation linking both representations
(Sect. 3.3). Finally, Section 4 is devoted to discuss further
issues and applications of this work.

n� a n + an

E1
E2S1 S2

propagation
time t+ �time t

Fig. 1. Sketch of the propagation step. The outgoing currents
Si, i = 1, 2, on node n propagate in one time step to become
incident currents Ej, j = 1, 2, on the neighbor nodes.

scattering

n� a n + an

time t time t

E1 E2 S1 S2

Fig. 2. Sketch of the scattering step. The incident currents Ei,
i = 1, 2, on node n are scattered instantaneously to become
outgoing currents Sj, j = 1, 2.

2 Majorana-Weyl representation

2.1 Basic definitions: currents and fields

This section is devoted to the construction of the Dirac
equation in the Majorana-Weyl representation, which
reads (see [16])

i
∂Ψ

∂t
=

[
−icσ3

∂

∂x
+
mc2

~
σ1

]
Ψ, (1)

where Ψ = (ψL ψR)T is the two-component spinor field
and σi, i = 1, 2, 3, denotes the Pauli matrices.

The elementary bricks of the construction are called
currents. The currents are complex numbers which prop-
agate from node to node along the bonds of a Cartesian
lattice, each bond carrying two currents propagating in
opposite directions. For simplicity, the lattice is chosen to
be one-dimensional and regular with a lattice mesh size
a. At any time t, the system is completely defined by the
values of all currents along the chain. The time variable is
also discrete and τ denotes the time unit. A current prop-
agates between two neighboring nodes in one time step.
All the currents propagate simultaneously, i.e. the outgo-
ing currents, denoted Si, i = 1, 2, leave the nodes at some
time t and become incident currents on the neighboring
nodes at time t+ τ . The incident currents are denoted Ei,
i = 1, 2 (Fig. 1).

After this propagation step, all the incident currents
are instantaneously scattered. The scattering process is
described by scattering matrices attached to each node.
It transforms the incident currents Ei, i = 1, 2, on one
node into outgoing currents Sj , j = 1, 2 on the same node
(Fig. 2).

Since our aim is to describe the two chiral fields ψL and
ψR, two kinds of currents, L and R currents, are naturally
introduced, leading to four currents propagating simul-
taneously on each bond. For clarity, the one-dimensional
lattice can be pictured by two sublattices carrying the L
and R currents respectively (Fig. 3). Due to the structure
of the Dirac equation (1) which displays a coupling term
between the two chiral components ψL and ψR, we also in-
troduce additional currents which propagate between the
two sublattices in one time step as depicted in Figure 4.
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Fig. 4. Propagation step for the L and R currents.
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Fig. 3. The chain is split into two subchains. The upper and
lower subchains carry the L and R currents respectively.

These additional currents, which are called the L or
R node-current in the following, do not propagate along
the chain but remain located on the same node. They can
be considered as propagating along an internal time axis
which couples the L and R sublattices at each node of
the chain. Moreover, these node currents participate in
the same scattering process as the propagating currents
(Fig. 5).

Thus, the scattering process reads

Si,L(n, t) =
3∑
j=1

sij,LEj,L(n, t), i = 1, 2, 3, (2)

Sk,R(n, t) =
3∑
l=1

skl,REl,R(n, t), k = 1, 2, 3, (3)

where sij,L and skl,R are the complex entries of the scat-
tering matrices SL and SR attached to each node. The
ensemble of all the scattering matrices belonging to the
chain defines the medium or the “background” in which
the currents live. Once the scattering matrices are known,
the evolution of the system at any time is completely de-
termined given any initial values of the currents. Through-
out the paper the scattering matrices are chosen to be
identical from node to node indicating that the medium
is uniform. However, the matrices SL and SR do not need
to be identical.

The dynamics includes all the features of a discrete
counterpart of the well-known Huygens principle. Namely,
the principle of action-by-proximity from one node to the
nearest-neighboring nodes is taken into account by the
propagation step, while the interferences and the radiation
of the energy in all directions are taken into account by
the scattering process.

Let us introduce some convenient notations. The bonds
attached to a given node are numbered as displayed in

Figure 5: 1 for the left bond, 2 for the right bond and 3
for the node bond.

Now consider a current Sk(n, t) leaving the node n
along the bond k, k = 1, 2, 3 (Fig. 6). At the next time
step, this current becomes an input current E on the
neighbor node along the kth direction. This neighbor node
is labelled nk. Note that this notation implies n3 = n.
Moreover, viewed from node nk, the bond on which lies
the input current E is denoted k, leading to labelling this
current as E = Ek(nk, t+ τ). This notation implies 1 = 2,
2 = 1, 3 = 3. Hence, the relations linking the outgoing and
the incident currents during the propagation step read

Ek,L(n, t+ τ) = Sk,L(nk, t), k = 1, 2, (4)

Ek,R(n, t+ τ) = Sk,R(nk, t), k = 1, 2,

E3,L(n, t+ τ) = S3,R(n, t), (5)

E3,R(n, t+ τ) = S3,L(n, t).

The propagation rules (5) take into account a transmu-
tation of the node currents S3,L and S3,R into E3,R and
E3,L respectively.

To pursue the construction of the Dirac equation
within this two-species current model, the chiral fields
need to be defined. The fields ψL, ψR are complex val-
ued functions which are defined on the nodes of the chain.
The linearity of the problem compels the choice for each
chiral field ψL or ψR to be a linear superposition of the L
orR currents respectively. As the outgoing currents can be
expressed as a function of the incident currents according
to the scattering equations (2, 3) it is sufficient to define
the chiral fields in terms of the incident currents solely:

ψL(n, t) =
3∑
k=1

λk,LEk,L(n, t), (6)

ψR(n, t) =
3∑
l=1

λl,R El,R(n, t), (7)

where λk,L, λl,R are complex numbers.

2.2 Discrete propagation equations linking ψL and ψR

Under certain assumptions, which we call thereafter clo-
sure conditions, we show that the two chiral fields, ψL,
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Fig. 5. Scattering step for the L and R currents.
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Fig. 6. Notations for the bond linking the central node n to one of its neighbor node nk and the propagating currents defined
on this bond.

ψR, satisfy the following discrete propagation equations

ψL(n, t+ τ)

= fL (ψL(n′, t′), ψR(n′, t′), ψL(n′′, t′′), ψR(n′′, t′′), . . . ) ,
(8)

ψR(n, t+ τ)

= fR (ψR(n′, t′), ψL(n′, t′), ψR(n′′, t′′), ψL(n′′, t′′), . . . ) ,
(9)

where the fields, ψL, ψR, on node n and at time t+ τ are
functions of both chiral fields on the same node and/or on
nodes n′, n′′, . . . , at previous times t′, t′′, . . . Equations
(8, 9) are closed equations in the fields. This means that
fL,R are functions involving the two chiral fields only and
do not depend explicitly on the incident currents of both
kinds. Moreover, the number of terms in the right hand
side of equations (8, 9) must be finite. Those two closure
conditions strongly constrain the form of the scattering
matrices SL,R, so that one finds

SL = PL + diag(µ1,L, µ2,L, µ3,L), (10)

SR = PR + diag(µ1,R, µ2,R, µ3,R), (11)

where

(P )ij,α = ρi,αλj,α, i, j = 1, 2, 3, α = R,L, (12)

and λj,α denotes the complex numbers appearing in the
definitions of the chiral fields. The ρi,α and µi,α are com-
plex numbers to be determined. As usual diag denotes a
diagonal matrix. The discussion leading to the form (10,
11) of the scattering matrices is exactly the same as for
scalar fields [6]. Therefore, we have only quoted the result
here. According to equations (10, 11), it is easy to check
that the outgoing current Sk for each species splits into a
term proportional to the incident current Ek of the same

kind on the same bond k and into a term proportional to
the field of the same kind

Sk,L = ρk,LψL + µk,LEk,L, (13)

Sk,R = ρk,RψR + µk,REk,R, k = 1, 2, 3. (14)

As the constructions of the equations (8, 9) obeyed by ψL
and ψR are carried out in the same way, we only consider
the equation for ψL in the following. An analogous equa-
tion can be derived for the field ψR. We fix the space-time
units, a and τ , to unity. Let us consider the L field on
node n at time t+ 1 which is defined as (Eq. (6))

ψL(n, t+ 1) =
3∑
k=1

λk,LEk,L(n, t+ 1).

According to the propagation step, it can be expressed in
terms of the outgoing currents at the previous time t

ψL(n, t+1)=
∑
k=1,2

λk,L Sk,L(nk, t) + λ3,L S3,R(n, t). (15)

In the remainder of this derivation, we will use draw-
ings as often as possible since those representations are
far more transparent than formal equations. For exam-
ple, the definition of the L field (Eq. (6)), ψL(n, t) =∑3
k=1 λk,LEk,L(n, t), is represented schematically as

sketched below

n� 1 n+ 1n

�3;L E3;L

�1;L E1;L �2;LE2;L

t L(n; t) �
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whereas equation (15) is sketched

n+ 1

�1;L S2;L

n � 1

�3;L S3;R

n

�2;L S1;L

t L(n; t+ 1) =

At time t, the outgoing bond currents appearing in
equation (15) were instantaneously scattered by SL ma-
trices. Hence, S1,L and S2,L are linear superpositions of L
incident currents on nodes n + 1 and n − 1 respectively,
whereas S3,R is scattered by an SR matrix on node n.
The resulting linear superpositions are given by the spe-
cific form (13). Schematically, this scattering process is
represented as follows

n� 1 n+ 1

�1;L S2;L

n

�2;L S1;L

�3;L S3;R

t

������

�2;L(�1;LE1;L)�1;L(�2;L E2;L)

�3;L(�3;RE3;R)
t

P
k=1;2 �k;L�k;L  L(nk; t) + �3;L�3;R R(n; t)�

+

which reads analytically

ψL(n, t+ 1) =
∑
k=1,2 λk,Lρk,L ψL(nk, t)

+λ3,Lρ3,R ψR(n, t)

+
∑
k=1,2

λk,Lµk,LEk,L(nk, t)+λ3,Lµ3,RE3,R(n, t).︸ ︷︷ ︸
current term

(16)

current term =

∑
k=1,2

λk,Lρk,Lµk,L + λ3,Lρ3,Lµ3,R

ψL(n, t− 1)

+
∑
k=1,2

λk,Lµk,Lµk,LEk,L(n, t− 1) + λ3,Lµ3,Rµ3,L E3,L(n, t− 1)

︸ ︷︷ ︸
new current term.

(18)
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Fig. 7. The upper drawing is a sketch of the current term in
equation (16) at time t, while the lower drawing is a sketch of
the same currents at time t− 1 before the propagation step.

n+ 1n� 1

�1;L(�2;L�1;L)E1;L �2;L(�1;L�2;L)E2;L

�3;L(�3;R�3;L)E3;L

n

t� 1

Fig. 8. Sketch of the new current term in equation (18).

According to the propagation step, the current term of
equation (16), which is the sum involving only the incident
currents and not the chiral fields, is deduced from three
outgoing currents at time t − 1. Those outgoing currents
are all defined on node n, as sketched in Figure 7 which
translates analytically through the following equation

current term =
∑
k=1,2

λk,Lµk,L Sk,L(n, t− 1)

+λ3,Lµ3,R S3,L(n, t− 1). (17)

Again, the outgoing currents appearing in the right
hand side of equation (17) are deduced from incident
currents on the same node according to the scattering
process (13). This leads to the equation (18).
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The new current term in the last equation is schemat-
ically depicted in Figure 8.

Plugging the right hand side of equation (18) into
equation (16) leads to

ψL(n, t+ 1)

−

∑
k=1,2

λk,Lρk,Lµk,L + λ3,Lρ3,Lµ3,R

 ψL(n, t− 1) =

∑
k=1,2

λk,Lρk,L ψL(nk, t) + λ3,Lρ3,R ψR(n, t)

+
∑
k=1,2

(µk,Lµk,L)λk,L Ek,L(n, t− 1)

+ (µ3,Rµ3,L)λ3,LE3,L(n, t− 1). (19)

Equation (19) is almost in the closed form we are looking
for but still contains a current term. In order to get an
equation which involves solely L,R fields without any L,R
currents, it is sufficient to impose the following relationsµk,Lµk,L = µL

2, k = 1, 2,

µ3,Rµ3,L = µL
2,

(20)

where µL is a constant parameter. The relations (20) have
been chosen in such a way that the last term of equation
(19) becomes proportional to ψL(n, t − 1). The insertion
of equations (20) into (19) leads to a discrete propagation
equation of the type of equation (8):

ψL(n, t+ 1)− µL
2

(
1 +

3∑
k=1

λk,Lρk,L

µk,L

)
ψL(n, t− 1)

=
∑
k=1,2

λk,Lρk,L ψL(nk, t) + λ3,Lρ3,R ψR(n, t). (21)

The discrete propagation equation obeyed by the R field
is directly deduced from the equation for the L field by
exchanging all the subscripts L and R:

ψR(n, t+ 1)− µR
2

(
1 +

3∑
k=1

λk,Rρk,R

µk,R

)
ψR(n, t− 1)

=
∑
k=1,2

λk,Rρk,R ψR(nk, t) + λ3,Rρ3,L ψL(n, t), (22)

where equation (22) has been supplemented by sufficient
conditions of the type of equations (20)µk,Rµk,R = µR

2, k = 1, 2,

µ3,Lµ3,R = µR
2.

(23)

The comparison of the second equations in both systems
(20, 23) leads to the equality: µL

2 = µR
2. In the rest of

this section, we will denote this constant by µ2. Now, if
the matrix parameters appearing in equations (21, 22) are

chosen according to the following relations

µ2

(
1 +

3∑
k=1

λk,Lρk,L

µk,L

)
= µ2

(
1 +

3∑
k=1

λk,Rρk,R

µk,R

)
= 1,

(24)

then a first-order discretized time derivative appears

ψL(n, t+ 1) − ψL(n, t− 1) =
∑
k=1,2

λk,Lρk,LψL(nk, t)

+ λ3,Lρ3,R ψR(n, t), (25)

ψR(n, t+ 1) − ψR(n, t− 1) =
∑
k=1,2

λk,Rρk,RψR(nk, t)

+ λ3,Rρ3,L ψL(n, t). (26)

On the same ground, the sums∑
k=1,2

λk,L,Rρk,L,RψL,R(nk, t)

entering equations (25, 26) can be turned into first-order
discretized spatial derivatives by an appropriate choice
of the products λk,L,Rρk,L,R, for k = 1, 2. With this as-
sumption, the two coupled discretized wave propagation
equations (25, 26) can be identified with the Dirac equa-
tion in the Majorana-Weyl representation. However, we
don’t need this last assumption at this step of our deriva-
tion. In the next section we show that implementing some
suitable symmetries on the scattering process constrains
even more the L,R matrix coefficients and turns the terms∑
k=1,2 λk,L,Rρk,L,RψL,R(nk, t) into first-order discretized

spatial derivatives.

2.3 Symmetries of the scattering process

Our goal is now to prove that a few well chosen assump-
tions on the symmetries of the scattering process leads
to the unique determination of the L,R scattering matri-
ces and to the discrete propagation equations (25, 26) in a
form very close to the Dirac equation (1). The symmetries
are implemented both on the currents and on the fields.
In this model, the scattering process is described by ma-
trices which are unitary due to time-reversal invariance
and reciprocity. This property insures the local conserva-
tion, at each time step, of the “flux” of the L,R currents:
(|S1 |

2
+ |S2 |

2
+ |S3 |

2
)L,R = (|E1 |

2
+ |E2 |

2
+ |E3 |

2
)L,R,

which is a stability condition on the dynamics of the
L,R fields at large times. Finally, the last symmetry re-
quired to complete the construction is reflection symmetry
(x 7→ −x) which is known to connect the two chiral fields.

2.3.1 Time-reversal invariance

Time-reversal invariance for the currents can be for-
mulated by stating that the two scattering processes,
sketched in Figure 9, are equivalent under a time-reversal
transformation.
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Fig. 9. Time-reversal invariance of the scattering process. The scattering process for the L,R currents depicted in (a) is
equivalent to the scattering process deduced from time-reversal symmetry (b).

Note that the L and R currents are exchanged in this
transformation. This corresponds to the exchange of the
spinor components ψL and ψR when considering the time-
reversal transformation in the Dirac equation. This leads
to the following relation between the scattering matrices

SL = (SR
∗)−1. (27)

According to the form (10, 11, 12) of the L,R scattering
matrices, equation (27) leads to the following constraints
on the L,R matrix coefficients

µk,L
ρ∗k,R

ρk,L
= C, µk,R

λ∗k,L

λk,R
= C′,

for k = 1, 2, 3,

µk,L
λ∗k,R

λk,L
=

1

C′∗
, µk,R

ρ∗k,L

ρk,R
=

1

C∗
,

(28)

where C,C′ are two constants which obey the condition
C+C′∗ =

∑3
k=1 λk,Lρ

∗
k,R. Equations (28) allow to express

the R matrix coefficients in terms of those of the L matrix.
We must also consider time-reversal invariance for the

chiral fields ψL and ψR. For its implementation, it is con-
venient to introduce the scalar field ψS constructed as a
linear superposition of outgoing currents

ψS(n, t) ≡
3∑
k=1

κkSk(n, t), (29)

where the coefficients κk are complex numbers. Up to now
the scalar fields ψEL , ψ

E
R , considered so far were linear su-

perpositions of incident currents (Eqs. (6, 7)). Owing to
the linearity of the scattering process (2, 3) there always
exist numbers κk such that the fields ψS obey the same
propagation equations as those satisfied by ψE , namely
equations (25, 26). By taking into account the special
form (13) of the outgoing currents, equation (29) for the
L field becomes

ψSL(n, t) =

(
3∑
k=1

κk,Lρk,L

)
ψEL (n, t)

+
3∑
k=1

κk,Lµk,LEk,L(n, t).

It is easy to show that the condition κk,Lµk,L = κLλk,L,
where κL doesn’t depend on the subscript k and is given
by κ−1

L = 1 +
∑3
k=1 λk,Lρk,L/µk,L, leads to the equality

between the outgoing field and the incident field: ψSL =
ψEL . Finally, using equations (24), ψSL reads

ψSL(n, t) ≡
3∑
k=1

κk,LSk,L(n, t) = µ2
3∑
k=1

λk,L

µk,L
Sk,L(n, t).

(30)

Similarly, one finds

ψSR(n, t) ≡
3∑
k=1

κk,RSk,R(n, t) = µ2
3∑
k=1

λk,R

µk,R
Sk,R(n, t).

(31)

It is natural to implement time-reversal invariance on the
chiral fields by the following conditions

ψSL(n, t) = ψER
∗
(n, t), (32)

ψSR(n, t) = ψEL
∗
(n, t). (33)

Here, we have explicitly distinguished the fields construc-
ted on the outgoing currents, ψSL,R, and the fields con-

structed on the incident currents, ψEL,R. Moreover the
complex conjugate fields have been considered in the in-
verse process. Now if we write down the currents in equa-
tions (32, 33) according to the definitions of the fields (6,
7, 29) the time-reversal invariance of the scattering pro-
cess (Fig. 9) leads to the following relations

κk,L = λ∗k,R, κk,R = λ∗k,L for k = 1, 2, 3. (34)

Then, using equations (20, 23) with µ2
L = µ2

R = µ2, the
last equation (34) gives

µk,Rµ
∗
k,L = 1, k = 1, 2, 3, and |µ | = 1,

µk,L = µ2µ∗k,R, k = 1, 2.
(35)
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Fig. 10. Reciprocity principle of the scattering process. The scattering channel 3 → 1 for the L currents (a) is equivalent to
the scattering channel 1→ 3 for the R currents (b).

Equations (28, 34, 35) lead to: C′ = µ2. Lastly, the rela-
tions (28) read

µk,L
λ∗k,R

λk,L
= µ2, µk,R

λ∗k,L

λk,R
= µ2,

for k = 1, 2, 3,

µk,L
ρ∗k,R

ρk,L
= C, µk,R

ρ∗k,L

ρk,R
=

1

C∗
,

(36)

with C + (µ∗)2 =
∑3
k=1 λk,Lρ

∗
k,R.

2.3.2 Reciprocity principle

The reciprocity principle states that the response of a
system at a point r′ due to an excitation at point r is
identical to the reciprocal process, namely the response
of the system at point r due to an excitation at point
r′. In our current model, the application of this principle
to the scattering process means that any scattering chan-
nel is identical to its reciprocal channel. The definition
of a scattering channel is illustrated in Figure 10a. An
incident L current at node n, E3,L in Figure 10a, is scat-
tered in three outgoing currents Si,L. A scattering chan-
nel is any of the three elementary processes, E3,L → S1,L,
E3,L → S2,L and E3,L → S3,L. Let us consider the first
channel E3,L → S1,L. The reciprocity principle states that
this scattering channel is equivalent to the reciprocal chan-
nel for the R current illustrated in Figure 10b. Roughly
speaking, each scattering channel for L currents in one di-
rection is equivalent to the same scattering channel for R
currents in the opposite direction. As for the time-reversed
processes considered in the previous section, note that the
L and R currents are exchanged in the two reciprocal pro-
cesses. This exchange of L and R currents is suggested by
the exchange of the spinor components ψL and ψR in the
symmetries underlying the Dirac equation.

Finally, reciprocity as defined above leads to the fol-
lowing relation between the scattering matrices

SL = TSR, (37)

and to the following constraints on the L,R matrix coef-
ficients ρk,L = γλk,R,

ρk,R = γλk,L, for k = 1, 2, 3,
µk,L = µk,R,

(38)

where γ is a complex number.

2.3.3 Unitarity of the scattering process

The combination of equations (27, 37) shows that SL and
SR are unitary matrices, each one satisfying:

SS† = Id, (39)

where Id denotes the identity matrix. Unitarity which is
expressed by combining together equations (35, 36, 38)
leads to

|µk,L | = |µk,R | = 1,

µk,L
λ∗k,L
ρk,L

=
C

γ∗
, for k = 1, 2, 3,

µk,R
λ∗k,R

ρk,R
=

1

(Cγ)∗
,

(40)

where C/γ + (C/γ)∗ = −Λ, with Λ ≡
∑
k=1,2,3 |λk,L |

2
=∑

k=1,2,3 |λk,R |
2
. Finally, some manipulations using equa-

tions (24, 38, 40) yields the parametrization of the L,R
matrix coefficients in terms of λk,L, µk,L and µ

ρk,L =
µ∗ − µ

Λ

(
µk,L

µ

)
λ∗k,L,

λk,R =
1

µ

(
µk,L

µ

)
λ∗k,L, for k = 1, 2, 3,

ρk,R =
µ∗ − µ

Λ
µλk,L.

(41)
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Fig. 11. Reflection invariance of the scattering process for the left bond current. The scattering process for the L current E1,L

(a) is equivalent to the scattering process after a reflection symmetry for the R current E′2,R (b).
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Using this parametrization and choosing µ3,L = µ3,R = µ
from equations (20, 38) the scattering matrices SL and
SR, (Eqs. (10, 11, 12)) take the form

skl,L =
µ∗ − µ

Λ

(
µk,L

µ

)
λ∗k,Lλl,L + µk,Lδkl, (42)

sij,R =
µ∗ − µ

Λ

(
µj,L

µ

)
λi,Lλ

∗
j,L + µi,Lδij , (43)

and the wave propagation equations (25, 26) become

ψL(n, t+ 1)− ψL(n, t− 1) =

µ∗ − µ

Λ

[(
µ1,L

µ

)
λ∗1,Lλ2,L ψL(n+ 1, t)

+

(
µ2,L

µ

)
λ1,Lλ

∗
2,L ψL(n−1, t)

]
+γλ2

3,L ψR(n, t), (44)

ψR(n, t+ 1)− ψR(n, t− 1) =

µ∗ − µ

Λ

[(
µ2,L

µ

)
λ1,Lλ

∗
2,L ψR(n+ 1, t)

+

(
µ1,L

µ

)
λ∗1,Lλ2,L ψR(n− 1, t)

]

+

(
µ∗ − µ

Λ

)2 λ∗3,L
2

γ
ψL(n, t). (45)

2.3.4 Reflection invariance

Reflection invariance states that the Dirac equation (1)
is invariant by the simultaneous exchange of ψL into ψR
and x into −x. We transpose this property to the scat-
tering process of the currents. Reflection invariance of the
scattering process can be decomposed in three elementary
steps sketched in Figures 11, 12 and 13. This symmetry
is formulated by stating that the two scattering processes
represented in figures (a) and (b) respectively, are equiv-
alent under a reflection.
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ψL(n, t+ 1) − ψL(n, t− 1) =

εµ
(µ∗ − µ)

2 + |ν |2
λ2,L

λ1,L

[
ψL(n+ 1, t) +

(
λ2,L

λ1,L

)∗
λ1,L

λ2,L
ψL(n− 1, t)

]
+ εγ

(
(µ∗ − µ)|ν |2

2 + |ν |2

)
ψR(n, t), (52)

ψR(n, t+ 1) − ψR(n, t− 1) =

εµ
(µ∗ − µ)

2 + |ν |2

(
λ2,L

λ1,L

)∗ [
ψR(n+ 1, t) +

λ2,L

λ1,L

(
λ1,L

λ2,L

)∗
ψR(n− 1, t)

]
+ εγ

(
(µ∗ − µ)|ν |2

2 + |ν |2

)
ψL(n, t).

(53)

For example, the equivalence of the scattering pro-
cesses (a) and (b) depicted in Figure 11 leads to the
following relations between the matrix elements: skl,L =
sk l,R, k = 1, 2, 3, and l = 1. Similar relations between
skl,L and sk l,R hold from Figures 12 and 13. Finally, the
constraints imposed by the reflection invariance on the
scattering coefficients are summed up by the equation

skl,L = sk l,R, for k, l = 1, 2, 3. (46)

Taking into account the form of the L and R matrix ele-
ments (Eqs. (42, 43)), we deduce from (46)

µ1,L = µ2,L,

|λ2,L |

|λ1,L |
= 1,

(
λ3,L

λ1,L

)∗
λ1,L

λ3,L
=
µ1,L

µ

(
λ2,L

λ1,L

)∗
,

(47)

where, using (35) and the third equation of system (38),
µ1,L and µ2,L can be written

µ1,L = µ2,L = εµµ, εµ = ±1. (48)

An additional constraint arises by requiring the reflection
invariance of the propagation equations (44, 45) satisfied
by the chiral fields. If we plug the last result (48) in those
two equations, the L,R fields are parity invariant provided
the last two terms of the r.h.s. of equations (44, 45) are

equal, which implies

γ = εγ

(
µ∗ − µ

ΛL

)(
λ∗3,L

λ3,L

)
, εγ = ±1. (49)

Using equations (47, 49), we obtain the phase of λ3,L

λ∗3,L

λ3,L
= εγµ. (50)

2.4 Identification with the Dirac equation and exact
form of the scattering matrices

In this section, we show that the propagation equa-
tions (44, 45) take either the form of the Dirac equation
in the Majorana-Weyl representation or can be identified
with two coupled Schrödinger equations (see Appendix).
We first note that the propagation equations (44, 45) de-
pend only on the ratios

λ2,L

λ1,L
, and ν ≡

λ3,L

λ1,L
. (51)

This is not surprising since the problem is linear which
supposes that the chiral fields are defined up to a mul-
tiplicative constant: λ1,L. Furthermore, according to the
equality between the modulus of λ2,L and λ1,L (Eq. (47))
and to the definition of Λ, those two equations can be
recast in the form

see equations (52) and (53) above.
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If we restrict the ratio (λ2,L/λ1,L)∗/(λ2,L/λ1,L) to be
equal to ± 1, i.e. λ2,L/λ1,L is either a real number or a
purely imaginary number, then the r.h.s. of the propaga-
tion equations (52, 53) displays a second order discretized
spatial derivative or a first-order discretized spatial deriva-
tive, respectively. We postpone the case where λ2,L/λ1,L

is a real number to the appendix and concentrate on the
other alternative where λ2,L/λ1,L is a purely imaginary
number. Combining (λ2,L/λ1,L)∗ = −(λ2,L/λ1,L) with
|λ2,L/λ1,L | = 1 (Eq. (47)) leads to λ2,L/λ1,L = iελ, where
ελ = ± 1. Writing µ = exp(iθ) (see Eq. (35)), the prop-
agation equations (52, 53) depend only on the two signs
ε ≡ ελεµ, εγ , and on the two real parameters |ν |, θ. The
space-time units, a and τ , are again introduced so that
c0 = a/τ is a microscopic velocity. The choices ε = −1 and
εγ = 1 leads to the identification with the Dirac equation
in the Majorana-Weyl representation (1)

1

2τ
(ψL(n, t+ τ)− ψL(n, t− τ)) =

−

(
2 sin θ

2 + |ν |2

)
a

τ

(
ψL(n+ a, t)− ψL(n− a, t)

2a

)

−
i

τ

(
sin θ|ν |2

2 + |ν |2

)
ψR(n, t), (54)

1

2τ
(ψR(n, t+ τ) − ψR(n, t− τ)) =

−

(
2 sin θ

2 + |ν |2

)
a

τ

(
ψR(n+ a, t)− ψR(n− a, t)

2a

)

−
i

τ

(
sin θ|ν |2

2 + |ν |2

)
ψL(n, t). (55)

Comparison between equations (54, 55) and (1) provides
the velocity c and the mass m of the chiral fields

c = c0
2 sin θ

2 + |ν |2
, (56)

mc2

~
=

1

τ

sin θ|ν |2

2 + |ν |2
· (57)

Exact form of the scattering matrices

The L,R matrix coefficients (42, 43) depend only on µ, on
the ratios µ1,L/µ = µ2,L/µ = εµ, λ2,L/λ1,L = iελ = −iεµ,
and ν. However the phase of ν is fixed because ν∗/ν = i,
thanks to the third equation of (47) and to (48). Therefore,
the L,R scattering matrices are parametrized by three real
parameters: εµ, θ and |ν |. We introduce a complex number
α defined by

α2 = iεµ, (58)

so that the scattering matrices read

SL = −
2 sin θ

2 + |ν |2
α2


1 −α2 ν

α2 1 α2ν

α2ν ν α2ν2

+µdiag (εµ, εµ, 1),

(59)

SR = −
2 sin θ

2 + |ν |2
α2


1 α2 α2ν

−α2 1 ν

ν α2ν α2ν2

+µdiag (εµ, εµ, 1).

(60)

Lastly, one finds easily the following relations

λ∗1,L

λ1,L
= −iµ,

λ∗2,L

λ2,L
= iµ, (61)

and

λ1,R = −iεµλ1,L, λ2,R = iεµλ2,L, λ3,R = λ3,L, (62)

which will be used later in the standard representation
(Sect. 3.3).

3 Standard representation

In this section, the ideas developed in the construction of
the current model for the Majorana-Weyl representation
are reproduced for the standard representation in 1 + 1
space-time dimensions. Let us recall the Hamiltonian form
of the Dirac equation in the standard representation

i
∂Ψ

∂t
=

[
−icσ1

∂

∂x
+
mc2

~
σ3

]
Ψ, (63)

where Ψ = (ψ+ ψ−)T is the two component spinor field
in the standard representation. Surprisingly, it turns out
that the scattering matrices cannot be computed by a di-
rect construction as in the Majorana-Weyl representation.
More precisely, it appears that the natural symmetries of
the Dirac equation in the standard representation trans-
posed to the scattering process lead to contradictions in
the computation of the scattering matrices. However, if we
take advantage of its linear connection with the Majorana-
Weyl representation, we are able to build indirectly the
current model for the standard representation.

3.1 Basic definitions: currents and fields

The two current models constructed for the standard and
the Majorana-Weyl representations share many features.
Indeed, two kinds of incident and outgoing currents are
defined on the bonds and on the nodes of a regular chain
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Fig. 14. Sketch of the chain in the standard representation.
The upper and lower subchains carry the + and − currents
respectively.

as the goal is to describe the propagation equations obeyed
by the two scalar fields ψ+ and ψ−. The lattice mesh size
a and the elementary time step τ are taken equal to unity.
Transposing the notations of Section 2.1, incident currents
are denoted by Ek,+, El,−, whereas outgoing currents are
denoted by Sk′,+, Sl′,−. Three incident currents of each
kind live on each node of the chain depicted in Figure 14.
E1,2,± denotes the ± bond-currents and E3,± denotes the
node-currents. The chain schematically represented in Fig-
ure 14 is deduced from the chain depicted in Figure 3,
for the Majorana-Weyl representation, by replacing the L
currents by + currents and the R currents by − currents.

The dynamics of the ± currents is similar to the dy-
namics defined for the L,R currents in the Majorana-Weyl
representation. The ± currents obey a discrete Huygens
principle on the chain which decomposes in two steps: a
propagation step and a scattering step. At a given time t,
all the ± currents undergo the dynamics simultaneously.
The incident currents Ej,+, El,−, are scattered instanta-
neously on each node of the chain to become outgoing cur-
rents Si,+, Sk,−, which are linear superposition of those
incident currents

Si,+(n, t) =
3∑
j=1

sij,+Ej,+(n, t), i = 1, 2, 3, (64)

Sk,−(n, t) =
3∑
l=1

skl,−El,−(n, t), k = 1, 2, 3. (65)

where sij,+, skl,− are the complex elements of the scat-
tering matrices S± attached to each node of the chain.
Then, in a unit time step, the ± outgoing currents prop-
agate from one node to the nearest-neighbor ones to be-
come incident currents at time t+ 1. Using the notations
previously introduced in Figure 6, the propagation rules
read 

Ek,+(n, t+ 1) = Sk,−(nk, t), k = 1, 2,

E3,+(n, t+ 1) = S3,+(n, t),

El,−(n, t+ 1) = Sl,+(nl, t), l = 1, 2,

E3,−(n, t+ 1) = −S3,−(n, t).

(66)

Contrary to the construction of the current-model in the
Majorana-Weyl representation the transmutation affects
solely the bond-currents and not the node-currents. The
choice of such propagation rules stems from the structure
of the Dirac equation (63) in which the spatial derivative
σ1∂/∂x couples ψ+ and ψ− while the last term (mc2/~)σ3

does not. Additionally, a minus sign affects the propaga-
tion of the − node-current. The reason for introducing
this minus sign will be clarified at the end of the con-
struction (see Sect. 3.2). The dynamics of the ± currents
is summarized in Figure 15.

Finally, similarly to the definitions (6, 7) of the chiral
fields in the Majorana-Weyl representation, we suppose
that the scalar fields ψ+ and ψ− are defined on each site
of the chain as complex linear superpositions of + or −
incident currents respectively

ψ+(n, t) =
3∑
k=1

λk,+ Ek,+(n, t), (67)

ψ−(n, t) =
3∑
l=1

λl,−El,−(n, t), (68)

where λk,+, λl,− are complex numbers.

3.2 Discrete propagation equations linking ψ+ and ψ
�

Given the local rules which govern the dynamics of the
± currents, our aim is to derive two closed propagation
equations involving the fields ψ±

ψ+(n, t+ 1)

= f+ (ψ+(n′, t′), ψ−(n′, t′), ψ+(n′′, t′′), ψ−(n′′, t′′), . . . ) ,
(69)

ψ−(n, t+ 1)

= f− (ψ−(n′, t′), ψ+(n′, t′), ψ−(n′′, t′′), ψ+(n′′, t′′), . . . ) ,
(70)

where the fields ψ± on node n and at time t+ 1 are func-
tions of both fields on the same node and/or on neigh-
boring nodes n′, n′′, . . . , at previous times t′, t′′, . . . The
necessary conditions constraining the scattering matrices
S± for the equations (69, 70) to be closed remain the same
as in the Majorana-Weyl construction (see Sect. 2.2). So
that the scattering matrices are of the form

S+ = P+ + diag(µ1,+, µ2,+, µ3,+), (71)

S− = P− + diag(µ1,−, µ2,−, µ3,−), (72)

where P± are matrices which are generically given, for
each kind of current, by (12) (with α = ±). The above
form of the scattering matrices S+ and S− implies for the
outgoing currents the following equations

Sk,+ = ρk,+ψ+ + µk,+Ek,+, (73)

Sk,− = ρk,−ψ− + µk,−Ek,−, k = 1, 2, 3. (74)
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Fig. 15. Scattering step (a) and propagation step (b) for the + and − currents.

The rest of the derivation is almost the same as for the
propagation equations (21, 22) in the Majorana-Weyl rep-
resentation.

Using the propagation rules (66) and the defini-
tion (67), the field ψ+ on node n at time t + 1 can be
expressed in terms of ± outgoing currents, defined at the
previous time t and on the neighbor nodes nk,

ψ+(n, t+1)=
∑
k=1,2

λk,+ Sk,−(nk, t)+λ3,+ S3,+(n, t). (75)

Equation (75) is sketched below

n n+ 1n� 1

t

�2;+ S1;�
�1;+ S2;�

 +(n; t+ 1) =

�3;+ S3;+

The outgoing currents entering equation (75) were
scattered instantaneously at time t: S1,−, S2,−, and S3,+,
result from linear combinations of ingoing currents of the
form (73, 74). As a consequence, ψ+(n, t+1) is represented
schematically in terms of ± ingoing currents at time t as

depicted as follows:
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which reads analytically

ψ+(n, t+ 1)

=
∑
k=1,2

λk,+ρk,− ψ−(nk, t) + λ3,+ρ3,+ ψ+(n, t)

+
∑
k=1,2

λk,+µk,−Ek,−(nk, t)+λ3,+µ3,+E3,+(n, t).︸ ︷︷ ︸
current term

(76)
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In virtue of the propagation and transmutation rules, the
current term of equation (76) is deduced from three ±
outgoing currents that were defined on node n and at the
previous time t− 1

current term

=
∑
k=1,2

λk,+µk,− Sk,+(n, t− 1) + λ3,+µ3,+ S3,+(n, t− 1).

(77)

Applying the scattering rules to the outgoing currents en-
tering the last equation gives rise to a field ψ+ and to
three + incident currents, at time t− 1

current term

=

∑
k=1,2

λk,+µk,−ρk,+ + λ3,+µ3,+ρ3,+

 ψ+(n, t− 1)

+
∑
k=1,2

λk,+µk,−µk,+ Ek,+(n, t− 1)

+ λ3,+µ
2
3,+E3,+(n, t− 1). (78)

At this stage, we see that in order to close equation (76)
at time t− 1, it is sufficient to impose

µk,+µk,− = µ2
+, k = 1, 2,

µ2
3,+ = µ2

+,
(79)

where we have introduced the constant µ2
+. We end up the

derivation of the closed propagation equation satisfied by
ψ+ by plugging the current term (78) into equation (76),
supplied with the two conditions (79),

ψ+(n, t+ 1)− µ2
+

(
1 +

3∑
k=1

λk,+ρk,+

µk,+

)
ψ+(n, t− 1) =∑

k=1,2

λk,+ρk,− ψ−(nk, t) + λ3,+ρ3,+ ψ+(n, t). (80)

The propagation equation for ψ− can be directly deduced
from equation (80) by inverting all the subscripts + and
−, except that we must take care of the minus sign in-
volved in the propagation step (66) of the − node current.
The propagation equation for ψ− is obtained in its final
form by noting that the minus sign appears first in the
expression of ψ−(n, t + 1) involving ± outgoing currents
(equation analogous to Eq. (75))

ψ−(n, t+ 1) =
∑
k=1,2

λk,− Sk,+(nk, t)− λ3,− S3,−(n, t).

Then, according to the scattering step, the last term of
this equation gives rise to the term: −λ3,−ρ3,− ψ−(n, t),
which is analogous to the term λ3,+ρ3,+ ψ+(n, t) in equa-
tion (80). Finally, one can check that this term is the only
one affected by the minus sign so that the propagation

equation for ψ− reads

ψ−(n, t+ 1)− µ2
−

(
1 +

3∑
k=1

λk,−ρk,−

µk,−

)
ψ−(n, t− 1) =∑

k=1,2

λk,−ρk,+ ψ+(nk, t)− λ3,−ρ3,− ψ−(n, t). (81)

Equation (81) is supplied with the following sufficient con-
ditions 

µk,−µk,+ = µ2
−, k = 1, 2,

µ2
3,− = µ2

−.
(82)

Comparison between equations (79) and (82) shows that
µ2

+ = µ2
− which will be noted µ2 in the following.

3.3 Tranformation equations from the Majorana-Weyl
to the standard representation

Implementing symmetries in the current model enables
one to determine uniquely the form of the scattering ma-
trices and of the propagation equations. Additionally, it
provides a stability condition on the dynamics of the cur-
rents, which is fulfilled if the scattering matrices are uni-
tary. Although this method was applied successfully in
order to build the current model for the Majorana-Weyl
construction (Sects. 2.3 and 2.4), it turns out that it fails
for the standard representation. We thus proceed by using
an indirect method in obtaining the ± scattering matri-
ces that relies on the linear transformation between the
Majorana-Weyl and the standard representations. Con-
trary to the direct method, we show that there exist sev-
eral possible expressions for the scattering matrices. The
linear correspondence between the Majorana-Weyl and
the standard representation reads{

ψ+ = ψL + ψR,
ψ− = ψL − ψR.

(83)

According to the definitions of the fields ψL and ψR (Eqs.
(6, 7)), ψ+ and ψ− in (83) become

ψ+ =
3∑
k=1

λk,LEk,L +
3∑
k=1

λk,REk,R, (84)

ψ− =
3∑
k=1

λk,LEk,L −
3∑
k=1

λk,REk,R. (85)

If we remember that the λk,L and the λk,R are linked
together by the relations (62), then it is possible to ex-
press ψ+ and ψ− as a function of the λk,L or of the λk,R
uniquely. Let us first put the emphasis on the L param-
eters rather than on the R ones. For this purpose, let us
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write equations (84, 85) in the following form

ψ+ =
1

2

∑
k=1,2

[
(λk,L − iεµλk,R)(Ek,L + iεµEk,R)

+ (λk,L + iεµλk,R)(Ek,L − iεµEk,R)
]

+
1

2

[
(λ3,L + λ3,R)(E3,L +E3,R)

+ (λ3,L − λ3,R)(E3,L −E3,R)
]
, (86)

ψ− =
1

2

∑
k=1,2

[
(λk,L + iεµλk,R)(Ek,L + iεµEk,R)

+ (λk,L − iεµλk,R)(Ek,L − iεµEk,R)
]

+
1

2

[
(λ3,L − λ3,R)(E3,L +E3,R)

+ (λ3,L + λ3,R)(E3,L −E3,R)
]
. (87)

If we plug (62) into the above equations, we see that terms
are cancelled in each equation so that ψ+ and ψ− become

ψ+ = λ1,L(E1,L − iεµE1,R) + λ2,L(E2,L + iεµE2,R)

+ λ3,L(E3,L +E3,R),

ψ− = λ1,L(E1,L + iεµE1,R) + λ2,L(E2,L − iεµE2,R)

+ λ3,L(E3,L −E3,R).

Now, identifying λk,+ and λk,− with λk,L, k = 1, 2, 3,
imposes the following relations between the ± incident
currents and the L,R onesE1,± = E1,L ∓ iεµE1,R,

E2,± = E2,L ± iεµE2,R,
E3,± = E3,L ±E3,R.

(88)

Assuming that the same relationships hold between the ±
and L,R outgoing currents, one finds that by substituting
the propagation rules (Eqs. (4, 5)) for the L,R currents
in (88), the propagation rules (66) for the ± currents are
recovered. The scattering matrices S± are also deduced
from (88), by using the expressions of the scattering ma-
trices in the Majorana-Weyl representation (Eqs. (59, 60))
leading to

S± = SL. (89)

If instead, we put the emphasis on the R currents rather
than on the L ones, the ± fields are obtained through
the equations (86, 87) where the roles of the L and R
subscripts are exchanged. If we plug (62) in those two
equations, ψ± becomes

ψ+ = λ1,R(E1,R + iεµE1,L) + λ2,R(E2,R − iεµE2,L)

+λ3,R(E3,R +E3,L),

ψ− = −λ1,R(E1,R − iεµE1,L)− λ2,R(E2,R + iεµE2,L)

−λ3,R(E3,R −E3,L).

Then, by choosing λk,+ = −λk,− = λk,R, k = 1, 2, 3, we
fix the relations between the ± incident currents and the
L,R ones E1,± = E1,R ± iεµE1,L,

E2,± = E2,R ∓ iεµE2,L,
E3,± = E3,R ±E3,L.

(90)

Again, if we assume that the same relationships hold be-
tween the outgoing currents of both representations, the
propagation rules of the standard representation are re-
covered and the ± scattering matrices read

S± = SR. (91)

Finally, we present a more symmetric transformation be-
tween the two representations where the L and R currents
are treated on the same footing. The starting point is to
write the ± fields (Eqs. (84, 85)) in the following form

ψ+ = α∗λ1,L(αE1,L + α∗E1,R)

+ αλ2,L(α∗E2,L + αE2,R)+λ3,L(E3,L+E3,R), (92)

ψ− = αλ1,L(α∗E1,L + αE1,R)

+ α∗λ2,L(αE2,L + α∗E2,R)

+ α2λ3,L(α∗2E3,L + α2E3,R), (93)

where α is defined by α2 = iεµ (Eq. (58)). The identities:
α∗λ1,L = αλ1,R, αλ1,L = −α∗λ1,R, α∗λ2,L = −αλ2,R,
αλ2,L = α∗λ2,R, which follow from (62), insure that nei-
ther the L incident currents nor the R incident currents
are preferred in equations (92, 93).

The choice{
λ1,+ = α∗λ1,L, λ2,+ = αλ2,L, λ3,+ = λ3,L,
λ1,− = αλ1,L, λ2,− = α∗λ2,L, λ3,− = α2λ3,L,

(94)

fixes ρ+ and ρ−{
ρ1,+ = αρ1,L, ρ2,+ = α∗ρ2,L, ρ3,+ = ρ3,L,

ρ1,− = α∗ρ1,L, ρ2,− = αρ2,L, ρ3,− = α∗2ρ3,L,
(95)

and the relations between the ± incident currents and the
L,R onesE1,+ = αE1,L + α∗E1,R, E1,− = α∗E1,L + αE1,R,

E2,+ = α∗E2,L + αE2,R, E2,− = αE2,L + α∗E2,R,

E3,+ = E3,L +E3,R, E3,− = α2∗E3,L + α2E3,R.

(96)

Assuming that the transformation rules (96) link also the
outgoing currents of each representation, we recover the
propagation rules of the standard representation and de-
rive the ± scattering matrices

S+= −
2 sin θ

2+|ν |2
α2


1 1 αν

1 1 αν

αν αν α2ν2

+µdiag (εµ, εµ, 1) ,

(97)
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S−= −
2 sin θ

2 + |ν |2
α2


1 −1 αν

−1 1 −αν

αν −αν α2ν2

+µdiag (εµ, εµ, 1) .

(98)

Within this symmetric transformation both scattering
matrices are different from SL and SR. Meanwhile, each
one satisfies the symmetries : S± = TS±, S−1

± = S∗±, and
are indeed unitary matrices. The first property, namely
S± = TS±, can be related to a reciprocity invariance
of the scattering process, whether the second property,
S−1
± = S∗±, can be related to a time reversal invariance

of the scattering process. But we stress that neither this
reciprocity property nor this time reversal symmetry are
symmetries obeyed by the components ψ+ and ψ− of the
spinor field in the standard representation. Hence, con-
trary to the Majorana-Weyl representation, the symme-
tries of the current scattering process are different from
the symmetries underlying the Dirac equation in the stan-
dard representation. This explains why we did not succeed
in the direct construction of the standard representation.

Finally, using equations (94, 95), equations (80, 81)
become

1

2τ
(ψ+(n, t+ τ)− ψ+(n, t− τ)) =(
2 sin θ

2 + |ν |2

)
a

τ

(
ψ−(n+ a, t)− ψ−(n− a, t)

2a

)

−
i

τ

(
sin θ|ν |2

2 + |ν |2

)
ψ+(n, t), (99)

1

2τ
(ψ−(n, t+ τ)− ψ−(n, t− τ)) =(
2 sin θ

2 + |ν |2

)
a

τ

(
ψ+(n+ a, t)− ψ+(n− a, t)

2a

)

+
i

τ

(
sin θ|ν |2

2 + |ν |2

)
ψ−(n, t), (100)

where

µ2

(
1 +

3∑
k=1

λk,+ρk,+

µk,+

)
= µ2

(
1 +

3∑
k=1

λk,−ρk,−

µk,−

)
= 1,

λ2,+ρ1,− = λ2,−ρ1,+ = −
2 sin θ

2 + |ν |2
,

λ1,+ρ2,− = λ1,−ρ2,+ =
2 sin θ

2 + |ν |2
,

λ3,+ρ3,+ = λ3,−ρ3,− = −i
2 sinθ|ν |2

2 + |ν |2
·

(101)

By using the relations (56, 57) one can check that equa-
tions (99, 100) are the discretized version of the Dirac
equation in the standard representation.

4 Conclusion and perspectives

In this article we have recovered the Dirac equation in
1 + 1 space-time dimensions from a microscopic current
model based on the Huygens principle and constructed
from suitable symmetries, thus extending to spinor waves
a previous work describing the propagation of scalar waves
in an arbitrary inhomogeneous medium [6]. This is not
surprising since the current model combines all the basic
features of wave propagation and since the symmetries are
those underlying the Dirac equation. The originality of the
method stems from the systematic construction based on
very simple dynamical rules. Moreover the equation de-
rived in this paper is independent of the type of discrete
lattice and could be derived on any graph. The method
developed in this paper is very close to the philosophy
sustaining the construction of various cellular automata
which are routinely used to solved numerically hydrody-
namic or phase transition problems. Indeed, even if we
cannot assign a precise physical meaning to the current
variables, we choose the dynamics of those basic variables
according to the fundamental laws of wave propagation.
Hopefuly, the current model for the Dirac equation could
be used as a useful tool to study numerically the time-
dependent spinor propagation in complex systems with
any kind of boundary conditions.

A natural extension of this work would be to describe
spinor field propagation in inhomogeneous media. Indeed,
a wide range of condensed matter problems are related
to the random mass Dirac equation in 1 + 1 space-time
dimensions and could be studied by using such a model.
Random mass Dirac spinors show up in the problem of
a one-dimensional metal with a half-filled electron band
and random backscattering [17], spin-ladder or quasi-one-
dimensional spin Peierls systems [18]. In order to derive
a Dirac equation with a mass and a velocity varying with
the space coordinate, we can use the method developed
in [6]. The description of scalar waves in an inhomogeneous
medium was achieved with the help of additional currents
that trap a fraction of the “energy” on each node. Such
additional currents can also be introduced for the Dirac
equation.

Another extension of this work would be to con-
struct the Dirac equation in higher space dimensions. This
should be useful for instance to study the plateau transi-
tions in the integer quantum Hall effect where the Dirac
equation shows up in 2 + 1 space-time dimensions [19].
Though the calculations are rather cumbersome, the Dirac
equation in 3 + 1 space-time dimensions can also be con-
structed with our method.

Finally, it would be interesting to see whether the cur-
rent model described in this paper could be useful as a
starting point for a path-integral formulation of the usual
Dirac equation in 1 + 1 space-time dimensions [20]. De-
spite the fact that the formulation of path integrals for
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i

2τ
(ψL(n, t+ τ )− ψL(n, t− τ )) =

−

(
sin θ

2 + |ν |2

)
a2

τ

(
ψL(n+ a, t) + ψL(n− a, t)− 2ψL(n, t)

a2

)
+
εγ

τ

(
sin θ|ν |2

2 + |ν |2

)
ψR(n, t)−

1

τ

(
2 sin θ

2 + |ν |2

)
ψL(n, t), (A.2)

i

2τ
(ψR(n, t+ τ )− ψR(n, t− τ )) =

−

(
sin θ

2 + |ν |2

)
a2

τ

(
ψR(n+ a, t) + ψR(n− a, t)− 2ψR(n, t)

a2

)
+
εγ

τ

(
sin θ|ν |2

2 + |ν |2

)
ψL(n, t)−

1

τ

(
2 sin θ

2 + |ν |2

)
ψR(n, t), (A.3)

spinor fields in terms of non-commutating variables is not
new within the framework of quantum field theory, this
description suffers from a lack of physical interpretation.
As an example the field-theoretical description of a spinor
field doesn’t describe the way the fermion particle moves
along a selected path as sketched by Feynman [21]. Some
progresses in this direction have been done by extending
the analogy between quantum mechanics and brownian
motion to the Dirac equation [22–25]. But this point of
view focusses on a probabilistic interpretation of the Dirac
particle through Poisson processes. On the contrary our
model deals with the Dirac equation itself and should give
a direct interpretation of the paths followed by a spinor
particle between two points.

During the preparation of this work, we have benefited from
discussions with D. Sornette. S. DTA acknowledges the hos-
pitality of the Earth and Space Sciences at UCLA and wants
also to thank warmly Jean-Louis Pichard, at the Service de
Physique de l’État Condensé du CE de Saclay, and Jean-Marc
Luck, at the Service de Physique Théorique du CE de Saclay,
for hospitality when the paper has been completed. We are
also indebted to Jean-Marc Luck for a careful reading of the
manuscript.

Appendix: Construction of the Schrödinger
equation with a spin

This appendix deals with the construction of a
Schrödinger equation for a quantum particle with a spin
1/2 in 1 + 1 space-time dimensions. This equation reads

i~
∂Ψ

∂t
=

[(
−
~2

2m

∂2

∂x2
+ v′

)
Id+ vσ1

]
Ψ, (A.1)

where Ψ = (ψL ψR)T is a two-component field. In Sec-
tion 2.4, we have obtained two discretized propagation
equations for the chiral fields (Eqs. (54, 55)) where the
order of the discrete spatial derivative is controlled by
the ratio (λ2,L/λ1,L)∗/(λ2,L/λ1,L). To derive the Dirac
equation, we have chosen λ2,L/λ1,L to be imaginary in or-
der to obtain a first order spatial derivative. If we assign
λ2,L/λ1,L to be real then a second order spatial deriva-
tive arises. We write λ2,L/λ1,L = ελ where ελ = ± 1.
The propagation equations (54, 55) depend now on the

two signs ε ≡ ελεµ, εγ , and on the two real parameters
|ν |, θ. Then, we recognize the discretized version of the
Schrödinger equation with a spin (A.1) if we fix ε = −1
in the two wave propagation equations

see equations (A.2) and (A.3) above

provided that

~
2m

=

(
sin θ

2 + |ν |2

)
a2

τ
= −

a2

2

v′

~
, (A.4)

v

~
=

(
sin θ|ν |2

2 + |ν |2

)
εγ

τ
. (A.5)

The L,R scattering matrices are parametrized by three
real parameters: εµ, θ and |ν |, as ν is a purely imaginary
number (using (47, 48)). Introducing again α (Eq. (58)),
the matrices read

SL = −
2 sin θ

2 + |ν |2
α2


1 iα2 ν

iα2 1 iα2ν

iα2ν ν iα2ν2

+µdiag (εµ, εµ, 1) ,

(A.6)

SR = −
2 sin θ

2 + |ν |2
α2


1 iα2 iα2ν

iα2 1 ν

ν iα2ν iα2ν2

+µdiag (εµ, εµ, 1) .

(A.7)
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